问题 解答题
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试.每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合格的概率均为
2
3
,每次考科目B成绩合格的概率均为
1
2
.假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X.
(1)求X的分布列和均值;
(2)求该同学在这项考试中获得合格证书的概率.
答案

(1)设该同学“第一次考科目A成绩合格”为事件A1

“科目A补考后成绩合格”为事件A2,“第一次考科目B成绩合格”为事件B1

“科目B补考后成绩合格”为事件B2

由题意知,X可能取得的值为:2,3,4

P(X=2)=P(A1B1)+P(
.
A1
.
A2
)
=
2
3
×
1
2
+
1
3
×
1
3
=
4
9
.
P(X=3)=P(A1
.
B1
B2)+P(A1
.
B1
.
B2
)+P(
.
A1
A2B1)
=
2
3
×
1
2
×
1
2
+
2
3
×
1
2
×
1
2
+
1
3
×
2
3
×
1
2
=
4
9
.
P(X=4)=P(
.
A1
A2
.
B1
B2)+P(
.
A1
A2
.
B1
.
B2
)

=

1
3
×
2
3
×
1
2
×
1
2
+
1
3
×
2
3
×
1
2
×
1
2
=
1
9

∴X的分布列为:

X234
P
4
9
4
9
1
9
EX=2×
4
9
+3×
4
9
+4×
1
9
=
8
3

(2)设“该同学在这项考试中获得合格证书”为事件C

P(C)=P(A1B1)+P(A1

.
B1
B2)+P(
.
A1
A2B1)+P(
.
A1
A2
.
B1
B2)=
2
3
×
1
2
+
2
3
×
1
2
×
1
2
+
1
3
×
2
3
×
1
2
+
2
3
×
1
2
×
1
2
=
2
3

故该同学在这项考试中获得合格证书的概率为

2
3

解答题
填空题