(Ⅰ)由题意可知函数的定义域为(0,+∞),
求导数可得f′(x)=2xlnx+x2•=2xlnx+x=x(2lnx+1),
令f′(x)=0,可解得x=,
当x变化时,f′(x),f(x)的变化情况如下表:
x | (0,) | | ( ,+∞) |
f′(x) | - | 0 | + |
f(x) | 单调递减 | 极小值 | 单调递增 |
所以函数f(x)的单调递减区间为(0,
),单调递增区间为(
,+∞)
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而====,其中u=lns,
要使<<成立,只需0<lnu<,
当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,
所以s>e,即u>1,从而lnu>0成立,
另一方面,令F(u)=lnu-,u>1,F′(u)=-,
令F′(u)=0,可解得u=2,
当1<u<2时,F′(u)>0,当u>2时,F′(u)<0,
故函数F(u)在u=2处取到极大值,也是最大值F(2)=ln2-1<0,
故有F(u)=lnu-<0,即lnu<,
综上可证:当t>e2时,有<<成立.