问题
解答题
把下列各式分解因式:
(1)xn+1+xn+3;
(2)4q(1-p)3+2(p-1)2;
(3)(x-3)2+(3x-9).
答案
(1)xn+1+xn+3=xn+1(1+x2);
(2)4q(1-p)3+2(p-1)2
=2(1-p)2[2q(1-p)+1]
=2(1-p)2(2q-2qp+1);
(3)(x-3)2+(3x-9)
=(x-3)2+3(x-3)
=x(x-3).
把下列各式分解因式:
(1)xn+1+xn+3;
(2)4q(1-p)3+2(p-1)2;
(3)(x-3)2+(3x-9).
(1)xn+1+xn+3=xn+1(1+x2);
(2)4q(1-p)3+2(p-1)2
=2(1-p)2[2q(1-p)+1]
=2(1-p)2(2q-2qp+1);
(3)(x-3)2+(3x-9)
=(x-3)2+3(x-3)
=x(x-3).