甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.
(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;
(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望E(ξ).
(1)甲、乙、丙三个同学中恰有一人通过笔试包括三种情况,这三种情况是互斥的,
分别记甲、乙、丙三个同学笔试合格为事件A1、A2、A3;
E表示事件“恰有一人通过笔试”
由互斥事件的概率和相互独立事件同时发生的概率得到
P(E)=P(A1. A2
)+P(. A3
A2. A1
)+P(. A3 . A1
A3). A2
=0.6×0.5×0.6+0.4×0.5×0.6+0.4×0.5×0.4=0.38.
(2)分别记甲、乙、丙三个同学经过两次考试后合格为事件A,B,C,
则P(A)=P(B)=P(C)=0.3
由题意知变量ξ可能的取值是0,1、2、3,
结合变量对应的事件写出分布列,
∴P(ξ=0)=0.73=0.343
P(ξ=1)=3×(1-0.3)2×0.3=0.441,
P(ξ=2)=3×0.32×0.7=0.189,
P(ξ=3)=0.33=0.027.
∴E(ξ)=1×0.441+2×0.189+3×0.027=0.9.