问题
解答题
对于任意的实数a(a≠0)和b,不等式|a+b|+|a-b|≥ M·|a|恒成立,记实数M的最大值是m。
(1)求m的值;
(2)解不等式|x-1|+|x-2|≤m。
答案
解:(1)不等式|a+b|+|a-b|≥M·|a|恒成立,
即对于任意的实数a(a≠0)和b恒成立,
只要M恒小于或等于的最小值,
因为 |a+b|+|a-b|≥ |(a+b)+(a-b)|=2|a|,
所以
即的最小值是2,
所以M≤2,m=2。
(2)当x<1时,原不等式化为-(x-1)-(x-2)≤2,
解得,
所以x的取值范围是
当1≤x≤2时,原不等式化为(x-1)-(x-2)≤2,
得x的取值范围是1≤x≤2
当x>2时,原不等式化为(x-1)+(x-2)≤2,
解得,
所以x的取值范围是
综上所述x的取值范围是。