问题 解答题

设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2

(1)求f(x)在Ik上的解析表达式;

(2)对自然数k,求集合Mk={a|使方程f(x)=ax在Ik上有两个不等的实根}

答案

(1)∵f(x)是以2为周期的函数,

∴当k∈Z时,2k也是f(x)的周期.

又∵当x∈Ik时,(x-2k)∈I0

∴f(x)=f(x-2k)=(x-2k)2

即对k∈Z,当x∈Ik时,f(x)=(x-2k)2

(2)当k∈Z且x∈Ik时,

利用(1)的结论可得方程(x-2k)2=ax,整理得:x2-(4k+a)+4k2=0.

它的判别式是△=(4k+a)2-16k2=a(a+8k).

上述方程在区间Ik上恰有两个不相等的实根的充要条件是a满足

a(a+8k)>0
2k-1<
1
2
[4k+a-
a(a+8k)
]
2k+1≥
1
2
[4k+a+
a(a+8k)
]

化简得

a(a+8k)>0,(1)
a(a+8k)
<2+a,(2)
a(a+8k)
≤2-a,(3)

由(1)知a>0,或a<-8k.

当a>0时:因2+a>2-a,故从(2),(3)

可得

a(a+8k)
≤2-a,即
a(a+8k)≤(2-a)2
2-a>0

当a<-8k时:2+a<2-8k<0,

易知

a(a+8k)
<2+a无解,

综上所述,a应满足0<a≤

1
2k+1
故所求集合Mk={a|0<a≤
1
2k+1
}

多项选择题
多选题