问题
填空题
设f(x)=3ax-2a+1,a为常数.若存在x0∈(0,1),使得f(x0)=0,则实数a的取值范围是 .
答案
因为存在x0∈(0,1),使得f(x0)=0,
所以函数f(x)在(0,1)上有零点,
因此f(0)×f(1)<0,即:(1-2a)(a+1)<0
解得:a<-1或a>
,故答案为:(-∞,-1)∪(1 2
,+∞).1 2
设f(x)=3ax-2a+1,a为常数.若存在x0∈(0,1),使得f(x0)=0,则实数a的取值范围是 .
因为存在x0∈(0,1),使得f(x0)=0,
所以函数f(x)在(0,1)上有零点,
因此f(0)×f(1)<0,即:(1-2a)(a+1)<0
解得:a<-1或a>
,故答案为:(-∞,-1)∪(1 2
,+∞).1 2