问题
解答题
设函数f(x)=a2x2(a>0).
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围.
答案
(1)∵函数f(x)=a2x2(a>0),将函数y=f(x)图象向右平移一个单位可得到函数y=φ(x)的图象,
∴y=φ(x)的解析式为:y=φ(x)=a2(x-1)2,由完全平方非负的特点可知其值域为:[0,+∞)
(2)解法一:不等式(x-1)2>f(x)的解集中的整数恰有3个⇔(1-a2)x2-2x+1>0恰有三个整数解,
故1-a2<0.令h(x)=(1-a2)x2-2x+1,由h(0)=1>0且h(1)=-a2<0(a>0)
所以函数h(x)=(1-a2)x2-2x+1的一个零点在区间(0,1),另一个零点一定在区间[-3,-2)
故
解得h(-2)>0 h(-3)≤0
≤a≤4 3 3 2
解法二:(1-a2)x2-2x+1>0恰有三个整数解,故1-a2<0,即a>1
(1-a2)x2-2x+1=[(1-a)x-1][(1+a)-1]>0
所以
<x<1 1-a
,又因为0<1 1+a
<11 1+a
所以-3≤
<-2,解得1 1-a
≤a≤4 3 3 2