问题
解答题
下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
设x2-4x=y
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的______.
A、提取公因式B.平方差公式
C、两数和的完全平方公式D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底______.(填“彻底”或“不彻底”)
若不彻底,请直接写出因式分解的最后结果______.
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
答案
(1)运用了C,两数和的完全平方公式;
(2)x2-4x+4还可以分解,分解不彻底;
(3)设x2-2x=y.
(x2-2x)(x2-2x+2)+1,
=y(y+2)+1,
=y2+2y+1,
=(y+1)2,
=(x2-2x+1)2,
=(x-1)4.