问题 解答题

选修4-5;不等式选讲

已知函数f(x)=|2x-a|+a.

(1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值;

(2)在(1)的条件下,若存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围.

答案

(1)由|2x-a|+a≤6得|2x-a|≤6-a,

∴a-6≤2x-a≤6-a,即a-3≤x≤3,

∴a-3=-2,

∴a=1.(5分)

(2)由(1)知f(x)=|2x-1|+1,令φ(n)=f(n)+f(-n),

则φ(n)=|2n-1|+|2n+1|+2=

2-4n,n≤-
1
2
4,-
1
2
<n≤
1
2
2+4n,n>
1
2

∴φ(n)的最小值为4,故实数m的取值范围是[4,+∞).(10分)

填空题
单项选择题