问题 解答题
已知:x2-3x=1,求下列各式的值.
(1)x2+
1
x2

(2)x4-6x3+10x2-3x+6.
答案

(1)∵x2-3x=1,

∴x1=

3+
13
2
,x2=
3-
13
2

∴当x1=

3+
13
2
时,x2+
1
x2
=
11+3
13
2
+
11-3
13
2
=11;

当x2=

3-
13
2
时,x2+
1
x2
=
11-3
13
2
+
11+3
13
2
=11;

(2)∵x2-3x=1,

∴x4-6x3+10x2-3x+6

=x4-6x3+9x2+x2-3x+6

=x4-6x3+9x2+7

=x2(x2-6x+9)+7

=x2(1-3x+9)+7

=x2-3x3+9x2+7

=-3x3+10x2+7

=-x(x2-3x+x2-3x+x2-3x-x)+7

=-x(3-x)+7

=x2-3x+7=1+7=8;

选择题
名词解释