问题 解答题

某中学校本课程共开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:

(1)求这3名学生选修课所有选法的总数;

(2)求恰有2门选修课没有被这3名学生选择的概率;

(3)求A选修课被这3名学生选择的人数的数学期望.

答案

(1)每个学生必须且只需选修1门选修课,每一人都有4种选择,总共有43=64(3分)
(2)恰有2门选修课这3名学生都没选择的概率:P2=

C24
C23
A22
43
=
9
16
(6分)
(3)设某一选修课被这3名学生选择的人数为ξ,则ξ=0,1,2,3     (7分)
P(ξ=0)=
33
43
=
27
64
,P(ξ=1)=
C13
32
43
=
27
64
,P(ξ=2)=
3
C13
43
=
9
64
,P(ξ=3)=
C33
43
=
1
64

分布列如下图:

ξ0123
P
27
64
27
64
9
64
1
64
∴Eξ=0×
27
64
+1×
27
64
+2×
9
64
+3×
1
64
=
3
4
(12分)

不定项选择
单项选择题