问题
选择题
设f(x)=3-x-ln
|
答案
∵f(x)=3-x-ln
=2x+1
-ln1 3x
(x>-2x+1
)1 2
∵0<a<b<c,且 f(a)f(b)f(c)<0,
∴f(a)、f(b)、f(c)中一项为负的、两项为正的;或者三项都是负的.
即f(c)<0,0<f(b)<f(a);或f(a)<f(b)<f(c)<0.
由于实数x0是函数y=f(x)的一个零点,
当f(c)<0,0<f(b)<f(a)时,b<x0<c,此时B,D成立.
当f(a)<f(b)<f(c)<0时,x0<a,此时A成立.
综上可得,C不可能成立,
故选C;