问题 解答题

已知函数f(x)=|x|,x∈R.

(Ⅰ)解不等式f(x-1)>2;

(Ⅱ)若[f(x)]2+y2+z2=9,试求x+2y+2z的最小值.

答案

(Ⅰ)不等式f(x-1)>2即|x-1|>2.

解得 x<-1,或 x>3.

故原不等式的解集为 {x|x<-1,或 x>3}.

(II)[f(x)]2+y2+z2=9,即x2+y2+z2=9,

由于(x2+y2+z2)×(1+4+4 )≥(x+2y+2z)2

∴9×(1+4+4 )≥(x+2y+2z)2

∴-9≤x+2y+2z≤9.

则x+2y+2z的最小值为:-9.

单项选择题 A1型题
单项选择题