问题
选择题
设函数f(x)=(x2-6x+c1)(x2-6x+c2)(x2-6x+c3),集合M={x|f(x)=0}={x1,x2,x3,x4,x5}⊆N*,设c1≥c2≥c3,则c1-c3=( )
A.6
B.8
C.2
D.4
答案
方程(x2-6x+c1)(x2-6x+c2)(x2-6x+c3)=0
x2-6x+c1=0
x2-6x+c2=0
x2-6x+c3=0
∵正整数解集为{x1,x2,x3,x4,x5},
∴当c=5时,x=1.x=5,
当c=8时,x=2,x=4
当c=9时,x=3,
符合正整数解集,
又c1≥c2≥c3,
故c1=9,c3=5
故c1-c3=4
故选D