问题
填空题
已知x+y=6,xy=4,则x3y+xy3的值为______.
答案
∵x+y=6,xy=4,
∴x3y+xy3
=xy(x2+y2)
=xy[(x2+y2+2xy)-2xy]
=xy[(x+y)2-2xy]
=4×(36-8)
=112.
故答案为:112.
已知x+y=6,xy=4,则x3y+xy3的值为______.
∵x+y=6,xy=4,
∴x3y+xy3
=xy(x2+y2)
=xy[(x2+y2+2xy)-2xy]
=xy[(x+y)2-2xy]
=4×(36-8)
=112.
故答案为:112.