问题 解答题

将下列各式因式分

(1)a3-16a;                   

(2)4ab+1-a2-4b2

(3)9(a-b)2+12(a2-b2)+4(a+b)2

(4)x2-2xy+y2+2x-2y+1.

(5)(x2-2x)2+2x2-4x+1.

(6)49(x-y)2-25(x+y)2

(7)81x5y5-16xy

(8)(x2-5x)2-36.

答案

(1)a3-16a=a(a2-16)=a(a+4)(a-4);                   

                  

(2)4ab+1-a2-4b2=1-(-4ab+a2+4b2)=1-(a-2b)2=(1+a-2b)(1-a+2b);

(3)9(a-b)2+12(a2-b2)+4(a+b)2=[3(a-b)]2+2×3(a-b)×2(a+b)+[2(a+b)]2=[3(a-b)+2(a+b)]2=(5a-b)2

(4)x2-2xy+y2+2x-2y+1=(x-y)2+2(x-y)+1=(x-y+1)2

(5)(x2-2x)2+2x2-4x+1=(x2-2x)2+2(x2-2x)+1=(x2-2x+1)2=(x-1)4

(6)49(x-y)2-25(x+y)2=[7(x-y)]2-[5(x+y)]2=[7(x-y)+5(x+y)][7(x-y)-5(x+y)]=(12x-2y)(2x-12y)=4(6x-y)(x-6y);

(7)81x5y5-16xy=xy(81x4y4-16)=xy(9x2y2+4)(9x2y2-4)=xy(9x2y2+4)(3xy+2)(3xy-2);

(8)(x2-5x)2-36=(x2-5x+6)(x2-5x-6)=(x-2)(x-3)(x-6)(x+1).

单项选择题
多项选择题