问题
选择题
设函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0,方程f(x)=0在闭区间[-2005,2005]上的根的个数为( )
A.804
B.803
C.802
D.800
答案
由 f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),⇒f(x)=f(4-x),f(x)=f(14-x)⇒f(4-x)=f(14-x)⇒f(x)=f(x+10)
又f(3)=f(1)=0⇒f(11)=f(13)=f(-7)=f(-9)=0
故f(x)在[0,10]和[-10,0]上均有有两个解,
从而可知函数y=f(x)在[0,2005]上有402个解,在[-2005,0]上有400个解,
所以函数y=f(x)在[-2005,2005]上有802个解.
故选C.