问题 解答题

已知a,b,c∈N*,方程ax2+bx+c=0在区间(-1,0)上有两个不同的实根,求a+b+c的最小值.

答案

设x1和x2方程ax2+bx+c=0有两个相异根,由a,b,c∈N*

两个根都在区间(-1,0)上,

可得函数f(x)=ax2+bx+c在区间(-1,0)上与x轴有两个不同的交点,

故有f(-1)=a+c-b>0,且f(0)=c>0,且△=b2-4ac>0,

x1+x2=-

b
a
∈(-2,0),且x1•x2=
c
a
∈(0,1).

故c的最小值为1,故有

a+1>b
a>c=1
b2>4a

当a=2时,正整数b不存在;当a=3时,正整数b不存在;

当a=4时,正整数b不存在;当a=5时,存在正整数b=5.

综上可得,c的最小值为1,a的最小值为5,b的最小值为5,

故a+b+c的最小值为1+5+5=11.

单项选择题 A1型题
单项选择题