问题
解答题
(1)解关于x的不等式x+|x-1|≤3;
(2)若关于x的不等式x+|x-1|≤a有解,求实数a的取值范围.
答案
(1)由不等式x+|x-1|≤3,可得
,或 x≤1 1≤3
,解得 x≤2,x>1 2x-1≤3
故不等式的解集为(-∞,2].
(2)若关于x的不等式x+|x-1|≤a有解,先分类讨论x与1的大小关系,去绝对值号.
当x≥1时,不等式化为x+x-1≤a,即x≤
.此时不等式有解当且仅当1≤1+a 2
,即a≥1.1+a 2
当x<1时,不等式化为x+1-x≤a,即1≤a.此时不等式有解当且仅当a≥1.
综上所述,若关于x的不等式x+|x-1|≤a有解,则实数a的取值范围是[1,+∞).