问题
选择题
已知x+y=0,xy=-6,则x3y+xy3的值是( )
A.72
B.-72
C.0
D.6
答案
∵x+y=0,xy=-6,
∴x3y+xy3=xy(x2+y2),
=xy[(x2+y2+2xy)-2xy],
=xy[(x+y)2-2xy],
=-6×(0+12),
=-72,
故选B.
已知x+y=0,xy=-6,则x3y+xy3的值是( )
A.72
B.-72
C.0
D.6
∵x+y=0,xy=-6,
∴x3y+xy3=xy(x2+y2),
=xy[(x2+y2+2xy)-2xy],
=xy[(x+y)2-2xy],
=-6×(0+12),
=-72,
故选B.