问题
填空题
已知函数f(x)=(
|
答案
∵f(x)=(
)x-log2x在(0,+∞)单调递减1 3
∵0<a<b<c
∴f(a)>f(b)>f(c)
∵f(a)f(b)f(c)<0
∴f(c)<f(b)<f(a)<0或f(c)<0<f(b)<f(a)
∵d是函数f(x)的一个即f(d)=0
若f(c)<f(b)<f(a)<0,f(d)=0则可得,c>b>a>d
若f(c)<0<f(b)<f(a),f(d)=0则可得,a<b<d<c
综上可得①d<a可能成立;②d>b可能成立;③d<c可能成立;④d>c不可能成立
故答案为:①②③