问题
解答题
已知x2-x+1=0,求代数式x8+x4+1的值.
答案
∵x2-x+1=0
∴x2=x-1,
∴x8+x4+1=x4(x4+1)+1
=(x2)2[(x2)2+1]+1,
=(x-1)2[(x-1)2+1]+1,
=(x2-2x+1)[(x2-2x+1)+1]+1,
=(x-1-2x+1)(x-1-2x+1+1)+1,
=(-x)(-x+1)+1,
=x2-x+1,
=0.
已知x2-x+1=0,求代数式x8+x4+1的值.
∵x2-x+1=0
∴x2=x-1,
∴x8+x4+1=x4(x4+1)+1
=(x2)2[(x2)2+1]+1,
=(x-1)2[(x-1)2+1]+1,
=(x2-2x+1)[(x2-2x+1)+1]+1,
=(x-1-2x+1)(x-1-2x+1+1)+1,
=(-x)(-x+1)+1,
=x2-x+1,
=0.