问题 解答题

若x,y,z满足(x-y)2+(z-y)2+2y2-2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.

答案

∵(x-y)2+(z-y)2+2y2-2(x+z)y+2xz

=(x-y)2+(z-y)2+2y2-2xy-2yz+2xz

=(x-y)2+(z-y)2+2y(y-x)-2z(y-x)

=(x-y)2+(z-y)2+2(y-x)(y-z)=0,

=[(x-y)+(z-y)]2=0,即x-y+z-y=0,

∴x+z=2y,

又∵x+y+z=48,

∴2y+y=48,即3y=48,

则y=16.

单项选择题
单项选择题