阅读下面材料: 若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
(1)请用上面的方法将多项式4x2+8x-1分解因式. (2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由. (3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围. |
(1)令4x2+8x-1=0,
∵a=4,b=8,c=-1,b2-4ac=64+16=80>0,
∴x1=
,x2=-2+ 5 2
,-2- 5 2
则4x2+8x-1=4(x-
)(x--2+ 5 2
);-2- 5 2
(2)二次三项式2x2-4x+7在实数范围内不能利用上面的方法分解因式,理由如下:
令2x2-4x+7=0,
∵b2-4ac=(-4)2-56=-40<0,
∴此方程无解,
则此二次三项式不能用上面的方法分解因式;
(3)令mx2-2(m+1)x+(m+1)(1-m)=0,
由此二次三项式能用上面的方法分解因式,即有解,
∴b2-4ac=4(m+1)2-4m(m+1)(1-m)≥0,
化简得:(m+1)[4(m+1)+4m(m-1)]≥0,即4(m+1)(m2+1)≥0,
∵m2+1≥1>0,∴m+1≥0,解得m≥-1,又m≠0,
则m≥-1且m≠0时,此二次三项式能用上面的方法分解因式.