问题
填空题
已知t2+t-1=0,则t3+2t2+2008=______.
答案
∵t2+t-1=0,
∴t2+t=1,
∴t3+2t2+2008=t(t2+t)-t2+2t2+2008,
=t+t2+2008,
=1+2008,
=2009.
故答案为:2009.
已知t2+t-1=0,则t3+2t2+2008=______.
∵t2+t-1=0,
∴t2+t=1,
∴t3+2t2+2008=t(t2+t)-t2+2t2+2008,
=t+t2+2008,
=1+2008,
=2009.
故答案为:2009.