问题
解答题
某校开设了甲、乙、丙、丁四门选修课程,每名学生必须且只需选修1门选修课程,有3名学生A、B、C选修什么课程相互独立.
(Ⅰ)求学生A、B、C中有且只有一人选修课程甲,无一人选修课程乙的概率;
(Ⅱ)求至少有两门课被这3名学生选修的概率.
答案
(Ⅰ)每个学生有4个选择,共所有的选择方法共有43=64种,
其中,选择课程甲的方法有3种,选择课程丙的方法有2种,选择课程丁的方法有2种,
根据分步计数原理,学生A、B、C中有且只有一人选修课程甲,无一人选修课程乙的方法有3×2×2=12种,
故学生A、B、C中有且只有一人选修课程甲,无一人选修课程乙的概率为
=12 64
.3 16
(Ⅱ)3个学生都选择同一门课程的概率为
=4 64
,故至少有两门课被这3名学生选修的概率为 1-1 16
=1 16
.15 16