问题
解答题
若x2(x+1)+y(xy+y)=(x+1)•A,则A=x2+y2.
答案
x2(x+1)+y(xy+y)=x2(x+1)+y2(x+1)=(x+1)•(x2+y2).
∴x2(x+1)+y(xy+y)=(x+1)•A,则A=x2+y2.
若x2(x+1)+y(xy+y)=(x+1)•A,则A=x2+y2.
x2(x+1)+y(xy+y)=x2(x+1)+y2(x+1)=(x+1)•(x2+y2).
∴x2(x+1)+y(xy+y)=(x+1)•A,则A=x2+y2.