问题 解答题

已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).

(1)求b,c的值;

(2)将二次函数y=-x2+bx+c的图象先向下平移2个单位,再向左平移1个单位,直接写出经过两次平移后的二次函数的关系式.

答案

(1)2,3;(2)y=-x2+2

题目分析:(1)由题意把(-1,0)和(0,3)代入y=-x2+bx+c即可求得结果;

(2)先把(1)中的函数关系式化为顶点式,再根据抛物线的平移规律“左加右减,上加下减”求解.

(1)把(-1,0)和(0,3)代入y=-x2+bx+c得:

解得:

(2)y=-x2+2x+3=-(x-1)2+4,

将它的图象先向下平移2个单位,再向左平移1个单位,得y=-(x-1+1)2+4-2=-x2+2.

所以经过两次平移后的二次函数的关系式是y=-x2+2.

点评:二次函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.

单项选择题 案例分析题
填空题