问题
填空题
不等式ax2+(a-3)x+(a-4)>0对a∈[1,∞)恒成立,则x的取值范围是______.
答案
由ax2+(a-3)x+(a-4)>0,得:(x2+x+1)a-3x-4>0,
∵x2+x+1>0恒成立,
令f(a)=(x2+x+1)a-3x-4,
要使(x2+x+1)a-3x-4>0对a∈[1,∞)恒成立,
则f(1)>0,即x2+x+1-3x-4>0恒成立,
解得:x<-1或x>3.
所以,使不等式ax2+(a-3)x+(a-4)>0对a∈[1,∞)恒成立的x的取值范围是(-∞,-1)或(3,+∞).
故答案为(-∞,-1)或(3,+∞).