问题 解答题
(1)已知a,b满足a2+b2+4a-8b+20=0,试分解(x2+y2)-(b+axy);
(2)计算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20082
)(1-
1
20092
);
(3)设a=1999x+1998,b=1999x+1999,c=1999x+2000,求a2+b2+c2-ab-ac-bc的值.
答案

(1)a2+b2+4a-8b+20=0,

(a+2)2+(b-4)2=0,

所以a=-2,b=4,

(x2+y2)-(4-2xy)

=x2+y2+2xy-4

=(x+y)2-4

=(x+y+2)(x+y-2);

(2)原式=(1-

1
2
)×(1+
1
2
)×(1-
1
3
)×(1+
1
3
)×(1-
1
4
)×(1+
1
4
)×…×(1-
1
2008
)×(1+
1
2008
)×(1-
1
2009
)×(1+
1
2009

=

1
2
×
3
2
×
2
3
×
4
3
×
3
4
×…×
2007
2008
×
2009
2008
×
2008
2009
×
2010
2009

=

1
2
×
2010
2009

=

1005
2009

(3)2(a2+b2+c2-ab-ac-bc)

=(a-b)2+(a-c)2+(b-c)2

当a=1999x+1998,b=1999x+1999,c=1999x+2000时,

(a-b)2+(a-c)2+(b-c)2

=(-1)2+(-2)2+(-1)2

=1+4+1

=6.

所以a2+b2+c2-ab-ac-bc=6÷2=3.

填空题
多项选择题