问题 解答题

如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.

(1)28和2012这两个数是神秘数吗?为什么?

(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?

(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?

答案

(1)28=4×7=82-62;2012=4×503=5042-5022

所以是神秘数;

(2)(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),

∴由2k+2和2k构造的神秘数是4的倍数.

(3)设两个连续奇数为2k+1和2k-1,

则(2k+1)2-(2k-1)2=8k,

∴两个连续奇数的平方差不是神秘数.

问答题
单项选择题