问题 解答题

已知二次函数y=a(x-m)2-2a(x-m)(a,m为常数,且a≠0).

(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;

(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC是等腰直角三角形时,求a的值.

答案

(1)见解析;(2).

题目分析:(1)二次函数和x轴有两个交点,判别式>0即可;

(2)先求出顶点坐标,由△ABC是等腰直角三角形,可以得出AB边上高等于1,即可得出a的值.

试题解析:

(1)证明:y=a(x-m)2-2a(x-m)=ax2-(2am+2a)x+am2+2am

当a≠0时,=(2am+2a)2-4a(am2+2am)

∴不论a与m为何值,该函数的图象与x轴总有两个公共点.

(2)y=a(x-m)2-2a(x-m)=a(x-m-1)2-a

∴C(m+1,-a)

当y=0时,

解得x1=m,x2=m+2.

∴AB=(m+2)-m=2.

当△ABC是等腰直角三角形时,可求出AB边上高等于1.

口语交际,情景问答题
单项选择题