问题
解答题
已知关于x的一元二次函数f(x)=ax2-4bx+1. (1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率; (2)设点(a,b)是区域
|
答案
(1)由题意知本题是一个等可能事件的概率,
∵试验发生包含的事件是3×5=15,
函数f(x)=ax2-4bx+1的图象的对称轴为x=
,2b a
要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
当且仅当a>0且
≤1,即2b≤a2b a
若a=1则b=-1,若a=2则b=-1,1;若a=3则b=-1,1;
∴事件包含基本事件的个数是1+2+2=5
∴所求事件的概率为
=5 15
.1 3
(2)由(Ⅰ)知当且仅当2b≤a且a>0时,
函数f(x)=ax2-4bx+1在区是间[1,+∞)上为增函数,
依条件可知试验的全部结果所构成的区域为{(a,b)|
}a+b-8≤0 a>0 b>0
构成所求事件的区域为三角形部分
由
得交点坐标为(a+b-8=0 b= a 2
,16 3
),8 3
∴所求事件的概率为P=
=
×8×1 2 8 3
×8×81 2
.1 3