问题
解答题
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少? |
答案
(1)1000-10x,-10x2+1300x-30000;(2)50元或80元;(3)8640元.
题目分析:(1)由销售单价每涨1元,就会少售出10件玩具得y=600-(x-40)×10=1000-10x,利润=(1000-10x)(x-30)=-10x2+1300x-30000;
(2)令-10x2+1300x-30000=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=-10x2+1300x-30000转化成y=-10(x-65)2+12250,结合x的取值范围,求出最大利润.
试题解析:(1)
销售单价(元) | x |
销售量y(件) | 1000-10x |
销售玩具获得利润w(元) | -10x2+1300x-30000 |
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润,
(3)根据题意得
解之得:44≤x≤46,
w=-10x2+1300x-30000=-10(x-65)2+12250,
∵a=-10<0,对称轴是直线x=65,
∴当44≤x≤46时,w随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
考点: 1.二次函数的应用;2.一元二次方程的应用.