问题 解答题
设x,y,z∈R+,且3x=4y=6z
(1)求证:
1
z
-
1
x
=
1
2y
;  
(2)比较3x,4y,6z的大小.
答案

(1)证明:设3x=4y=6z=t.∵x>0,y>0,z>0,∴t>1,lgt>0,

x=log3t=

lgt
lg3
y=log4t=
lgt
lg4
z=log6t=
lgt
lg6

1
z
-
1
x
=
lg6
lgt
-
lg3
lgt
=
lg2
lgt
=
lg4
2lgt
=
1
2y

(2)∵3x>0,4y>0,且

3x
4y
=
3
lgt
lg3
4
lgt
lg4
=log3
427
<1.

∴3x<4y,同理4y<6z,

故3x<4y<6z.

填空题
单项选择题 A1/A2型题