问题 选择题
已知数列{an}满足条件:a1=
1
7
,an+1=
7
2
an(1-an),则对任意正偶数n,an+1-an=
3
7
的概率等于(  )
A.1B.
1
2
C.
n+1
2n
D.
n-1
2n
答案

根据题意:a1=

1
7
,an+1=
7
2
an(1-an),

则a2=

7
2
×
1
7
×(1-
1
7
)=
3
7
,a3=
7
2
×
3
7
×(1-
3
7
)=
6
7

a4=

7
2
×
6
7
×(1-
6
7
)=
3
7
,a5=
7
2
×
3
7
×(1-
3
7
)=
6
7
,…

归纳可得:从第二项开始,奇数项为

6
7
,偶数项为
3
7

则对任意正偶数n,有an+1-an=

3
7
,即an+1-an=
3
7
的概率为1;

故选A.

填空题
单项选择题