问题
选择题
方程(a2+1)x2-2ax-3=0的两根x1,x2满足|x2|<x1(1-x2)且0<x1<1,则实数a的取值范围是( )
|
答案
∵|x2|<x1(1-x2),∴x1(1-x2)>0,又∵0<x1<1,∴x2<1
设f(x)=(a2+1)x2-2ax-3,∵方程有两根,∴△=4a2+12(a2+1)>0恒成立,
则f(1)=a2-2a-2>0,解得a>1+
或a<1-3
;3
∵f(0)=-3,∴x2<0<x1<1,
则|x2|<x1(1-x2)可化简为:x1+x2>x1x2,利用韦达定理得
>-2a a2+1 3 a2+1
解得a>-
.3 2
∴实数a的取值范围是:(-
,1-3 2
)∪(1+3
,+∞)3
故选C.