问题 选择题
甲、乙两位同学玩游戏,对于给定的实数a1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a1乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把a1除以2后再加上12,这样就可以得到一个新的实数a2,对实数a2仍按上述方法进行一次操作,又得到一个新的实数a3,当a3>a1,甲获胜,否则乙获胜,若甲获胜的概率为
3
4
,则a1的取值范围是(  )
A.(-∞,12]B.[24,+∞)
C.(12,24)D.(-∞,12]∪[24,+∞)
答案

a3的结果有四种,每一个结果出现的概率都是

1
4

1.a1→2a1+12→2(2a1+12)+12=4a1+36=a3

2.a1→2a1+12→

a1+12
2
+12=a1+18=a3

3.a1

a1
2
+12→(
a1
2
+12)/2+12=
a1
4
+18=a3

4.a1

a1
2
+12→2(
a1
2
+12)+12=a1+36=a3

∵a1+18>a1,a1+36>a1

∴要使甲获胜的概率为

3
4

即a3>a1的概率为

3
4

∴4a1+36>a1,

a1
4
+18≤a1

或4a1+36≤a1

a1
4
+18>a1,

解得a1≥24或a1≤-12.

故选D.

多项选择题
单项选择题