问题
解答题
若关于x的不等式(2-a)x2-2(2-a)x+4≤0解集为∅,求实数a的取值范围.
答案
若关于x的不等式(2-a)x2-2(2-a)x+4≤0解集为∅,
当2-a=0,即a=2时,不等式4≤0解集为∅,满足条件;
当2-a≠0,即a≠2时,
若不等式(2-a)x2-2(2-a)x+4≤0解集为∅,
则对应的二次函数y=(2-a)x2-2(2-a)x+4开口朝上,且与x轴没有交点
则2-a>0 △=4(2-a)2-16(2-a)2<0
解得-2<a<2
综上所述-2<a≤2
即实数a的取值范围为(-2,2]