问题
填空题
设函数f(x)=logax(a>0,a≠1),f(x1x2x3…x10)=30 (x1,x2,…x1全为正数),则f(
|
答案
f(x1x2x3…x10)=30,即loga(x1x2…x10)=30,
f(
)+f(x1
)+f(x2
)+…+f(x3
)x10
=loga
+logax1
+…+logax2 x10
=
logax1+1 2
logax2+…+1 2
logax101 2
=
loga(x1x2…x10)=1 2
×30=15.1 2
故答案为:15.