问题
解答题
设关于x的不等式x2-(2m-4)x+m2-4m<0的解集为M,且[0,3]⊆M,求实数m的取值范围.
答案
原不等式化为(x-m)[x-(m-4)]<0,
解得,m-4<x<m.
所以M=(m-4,m),
又[0,3]⊆M,
所以
,解得3<m<4.m>3 m-4<0
所以实数m的取值范围是(3,4).
设关于x的不等式x2-(2m-4)x+m2-4m<0的解集为M,且[0,3]⊆M,求实数m的取值范围.
原不等式化为(x-m)[x-(m-4)]<0,
解得,m-4<x<m.
所以M=(m-4,m),
又[0,3]⊆M,
所以
,解得3<m<4.m>3 m-4<0
所以实数m的取值范围是(3,4).