问题
填空题
设函数f(x)=logax(a>0,a≠1),若f(x1x2…x2010)=8,则f(
|
答案
:∵f(x)=logax(a>0,a≠1),且f(x1x2…x2010)=8,
∴f(x12)+f(x22)+…+f(x20102)
=logax12+logax22+…+logax20102
=loga(x1x2…x2010)2
=2f(x1x2…x2010)=2×8=16.
故答案为 16.
设函数f(x)=logax(a>0,a≠1),若f(x1x2…x2010)=8,则f(
|
:∵f(x)=logax(a>0,a≠1),且f(x1x2…x2010)=8,
∴f(x12)+f(x22)+…+f(x20102)
=logax12+logax22+…+logax20102
=loga(x1x2…x2010)2
=2f(x1x2…x2010)=2×8=16.
故答案为 16.