问题
解答题
已知函数f(x)=x2-bx+a2(a,b∈R)
(1)若a∈{0,1,2,3},b∈{0,1,2,3},求方程f(x)=0有实数根的概率;
(2)若a从区间[0,3]内任取一个数,b从区间[0,2]内任取一个数,求方程f(x)=0有实数根的概率.
答案
(1)设方程x2-bx+a2=0有实根为事件A.
数对(a,b)共有(0,0),(0,1)…(2,3),(3,2),(3,3)计16对
若方程有实根,则有△=b2-4a2≥0.及b≥2a
则满足题意的数对(a,b)只有(0,0),(0,1),(0,2),(0,3),(1,2),(1,3)计6对
所以方程有实根的概率P(A)=
=6 16 3 8
(2)设方程x2-bx+a2=0有实根为事件B.D={(a,b)|0≤a≤3,0≤b≤2},所以SD=3×2=6
方程有实根对应区域为d={(a,b)|b≥2a},Sd=
×1×2=11 2
所以方程有实根的概率P(B)=
=Sd SD
.1 6