问题 填空题

若x2+2kx-(k-2)>0对一切x∈R恒成立,则实数k的取值范围是______.

答案

x2+2kx-(k-2)>0对一切x∈R恒成立,

又函数y=x2+2kx-(k-2)图象开口向上,

所以只需满足函数图象与x轴没有交点即可,

所以(2k)2-4×[-(k-2)]<0,解得-2<k<1.

所以实数k的取值范围为(-2,1).

故答案为:(-2,1).

选择题
名词解释