问题 问答题

如图8-15所示,长为l的绝缘细线,一端悬于O点,另一端连接一质量为m的带负电小球,置于水平向右的匀强电场中,在O点

向右水平拉直后从静止释放,细线碰到钉子后要使小球刚好饶钉子O′在竖直平面内作圆周运动,求OO′长度。

答案

本题是一个摆在重力场和电场的叠加场中的运动问题,由于重力场和电场力做功都与路径无关,因此可以把两个场叠加起来看成一个等效力场来处理,如图8-17所示,

∴θ=60°。

开始时,摆球在合力F的作用下沿力的方向作匀加速直线运动,从A点运动到B点,由图8-17可知,△AOB为等边三角形,则摆球从A到B,在等效力场中,由能量守恒定律得:

在B点处,由于在极短的时间内细线被拉紧,摆球受到细线拉力的冲量作用,法向分量v2变为零,切向分量

接着摆球以v1为初速度沿圆弧BC做变速圆周运动,碰到钉子O′后,在竖直平面内做圆周运动,在等效力场中,过点O′做合力F的平行线与圆的交点为Q,即为摆球绕O′点做圆周运动的“最高点”,在Q点应满足

过O点做OP⊥AB取OP为等势面,在等效力场中,根据能量守恒定律得:

多项选择题
选择题