问题
填空题
对于满足0≤a≤4的实数a,使x2+ax>4x+a-3恒成立的x取值范围是________.
答案
(-∞,-1)∪(3,+∞)
原不等式等价于x2+ax-4x-a+3>0,∴a(x-1)+x2-4x+3>0,令f(a)=a(x-1)+x2-4x+3,则函数f(a)=a(x-1)+x2-4x+3表示直线,∴要使f(a)=a(x-1)+x2-4x+3>0,则有f(0)>0,f(4)>0,即x2-4x+3>0且x2-1>0,解得x>3或x<-1,即不等式的解集为(-∞,-1)∪(3,+∞).