问题 解答题
求不等式log 
1
2
(x+1)≥log2(2x+1)的解集.
答案

∵log 

1
2
(x+1)≥log2(2x+1),

∴-log2(x+1)≥log2(2x+1),

∴log2(x+1)+log2(2x+1)≤0,

log2[(x+1)(2x+1)]≤log21

2x+1>0
x+1>0
(2x+1)(x+1)≤1

解得-

1
2
<x≤0.

故原不等式的解集为:(-

1
2
,0].

单项选择题
单项选择题