设数列{an}、{bn}满足a1=4,a2=
(1)证明:an>2,0<bn<2(n∈N*); (2)设cn=log3
(3)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,数列{anbn}的前n项和为{Pn},求证:Sn+Tn<Pn+
|
(本题满分16分)
(1)∵an+1=
,bn+1=an+bn 2
,2anbn an+bn
两式相乘得anbn=an+1bn+1,
∴{anbn}为常数列,∴anbn=a1b1=4;(2分)
∴bn=
,4 an
∴an+1=
(an+1 2
)>2,4 an
∴0<bn<2;
(若an=2,则an+1=2,从而可得{an}为常数列与a1=4矛盾);(4分)
(2)∵cn=log3
,an+2 an-2
∴cn+1=log3an+1+2 an+1-2
=log3
an+1 2
+22 an
an+1 2
-22 an
=log3(
)2an+2 an-2
=2log3(
),an+2 an-2
∴
=cn+1 Cn
=2,2log3(
)an+2 an-2 log3(
)an+2 an-2
∴{cn}为等比数列,
∵c1=1,∴cn=2n-1.(8分)
(3)由cn=2n-1,知an=2•
=2(1+32n-1+1 32n-1-1
)=2+2 32n-1-1
,4 32n-1-1
令dn=
,数列{dn}的前n项和为Dn,很显然只要证明Dn≤4 32n-1-1
,(n≥2),8 3
∵n≥2,∴32n-1+1≥4.
∵dn=
=4 32n-1-1
=4 (32n-1)2-1
≤4 (32n-x+1)(32n-x-1)
dn-1,1 4
∴dn=
≤4 (32n-1+1)(32n-1)
dn-1≤(1 4
)2dn-2≤…≤(1 4
)n-2d2,1 4
所以Dn=d1+(d2+d3+…+dn)≤d1+[1+
+(1 4
)2+…+(1 4
)n-2]d21 4
≤2+
=2+
[1-(1 2
)n-2]1 4 1- 1 4
[1-(2 3
)n-2]=1 4
-8 3
(2 3
)n-2<1 4
,8 3
所以Sn<2n+
.(14分)8 3
又anbn=4,bn<2,故pn=4n,且Tn<2n,
所以Sn+Tn<2n+
+2n=4n+8 3
=pn+8 3
,n≥2.(16分)8 3