问题 解答题
设数列{an}、{bn}满足a1=4,a2=
5
2
,an+1=
an+bn
2
,bn=
2anbn
an+bn

(1)证明:an>2,0<bn<2(n∈N*);
(2)设cn=log3
an+2
an-2
,求数列{cn}的通项公式;
(3)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,数列{anbn}的前n项和为{Pn},求证:Sn+Tn<Pn+
8
3
.(n≥2)
答案

(本题满分16分)

(1)∵an+1=

an+bn
2
,bn+1=
2anbn
an+bn

两式相乘得anbn=an+1bn+1

∴{anbn}为常数列,∴anbn=a1b1=4;(2分)

bn=

4
an

an+1=

1
2
(an+
4
an
)>2,

∴0<bn<2;

(若an=2,则an+1=2,从而可得{an}为常数列与a1=4矛盾);(4分)

(2)∵cn=log3

an+2
an-2

cn+1=log3

an+1+2
an+1-2

=log3

1
2
an+
2
an
+2
1
2
an+
2
an
-2

=log3(

an+2
an-2
)2

=2log3(

an+2
an-2
),

cn+1
Cn
=
2log3(
an+2
an-2
)
log3(
an+2
an-2
)
=2,

∴{cn}为等比数列,

∵c1=1,∴cn=2n-1.(8分)

(3)由cn=2n-1,知an=2•

32n-1+1
32n-1-1
=2(1+
2
32n-1-1
)=2+
4
32n-1-1

dn=

4
32n-1-1
,数列{dn}的前n项和为Dn,很显然只要证明Dn
8
3
,(n≥2),

∵n≥2,∴32n-1+1≥4

dn=

4
32n-1-1
=
4
(32n-1)2-1
=
4
(32n-x+1)(32n-x-1)
1
4
dn-1

∴dn=

4
(32n-1+1)(32n-1)
1
4
dn-1
(
1
4
)
2
dn-2
≤…≤(
1
4
)
n-2
d2

所以Dn=d1+(d2+d3+…+dn)≤d1+[1+

1
4
+(
1
4
)2+…+(
1
4
)n-2]d2

≤2+

1
2
[1-(
1
4
)n-2]
1-
1
4
=2+
2
3
[1-(
1
4
)n-2]
=
8
3
-
2
3
(
1
4
)n-2
8
3

所以Sn<2n+

8
3
.(14分)

又anbn=4,bn<2,故pn=4n,且Tn<2n,

所以Sn+Tn<2n+

8
3
+2n=4n+
8
3
=pn+
8
3
,n≥2.(16分)

单项选择题
单项选择题