问题 选择题
函数y=lg
1-x
1+x
的图象(  )
A.关于x轴对称B.关于y轴对称
C.关于原点对称D.关于直线y=x对称
答案

要使函数有意义则

1-x
1+x
>0,即
x-1
x+1
<0
,所以解得-1<x<1,即函数的定义域为(-1,1)关于原点对称.

f(-x)=lg

1+x
1-x
=lg(
1-x
1+x
)
-1
=-lg
1-x
1+x
=-f(x),

所以函数y=lg

1-x
1+x
是奇函数,所以图象关于原点对称.

故选C.

多项选择题
判断题